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Tumors initiate as a clonal disease and grow as ecosystems, 
in which distinct subpopulations of cells engage in complex 
interactions. Genetic and epigenetic heterogeneity among 

cancer cells flows from the intrinsic biology of multistep carcino-
genesis1–3. Tumors, however, contain more than just cancer cells and 
the complexity of tumor heterogeneity is amplified by contributions 
from the tumor microenvironment (TME)4.

Key players in the TME are CAFs. CAFs promote cancer pheno-
types including proliferation, invasion, extracellular matrix (ECM) 
remodeling and inflammation4–7, as well as chemoresistance8 and 
immunosuppression9. Different cell-surface markers identify 
unique subpopulations of CAFs and different origins have been 
suggested for CAFs, including tissue-resident fibroblasts, myofibro-
blasts, bone-marrow (BM)-derived mesenchymal stem cells (MSCs) 
and adipocytes10–14.

Currently, it is unclear to what extent CAF subpopula-
tions and their functions change over time with tumor progres-
sion and metastasis. Here we address this question using an 
unbiased approach that does not require a priori defined markers15  
to characterize thousands of CAFs at several time points over  
breast tumor growth and metastasis in mice. We identify eight 
CAF subtypes in two main CAF populations, which we term pCAF  
and sCAF, based on selective expression of the markers Pdpn or 
S100a4 (also called fibroblast-specific protein 1; FSP1). These CAF 

subtypes appear progressively over time, transitioning from an early 
immunoregulatory transcriptional program, to a late combination 
of antigen-presentation and wound-healing programs. Using the 
PDPN and S100A4 protein markers, as well as markers for subpopu-
lations of sCAFs and pCAFs, we show that human breast tumors have 
similar CAF compositions and that the ratio between PDPN+ and 
S100A4+ CAFs is associated with BRCA mutations in triple-negative 
breast cancer (TNBC). Moreover, in two independent cohorts of 
patients with breast cancer, the ratio between PDPN+ and S100A4+ 
CAFs strongly correlates with clinical outcome. This study shows 
that CAF functions change with tumor progression, providing clini-
cally relevant markers. Our findings raise the concept of a dynamic 
TME, in which genomically stable cells change their transcriptional 
program to keep track of the evolving tumor ecosystem.

Results
Comprehensive mapping of breast CAFs reveals subpopulations 
with distinct transcriptional programs. To discover CAF subtypes 
associated with breast cancer progression we first set out to charac-
terize the stromal cell types/states that comprise breast tumors in 
a mouse model of triple-negative 4T1 cancer cells orthotopically 
injected into the mammary fat pad of immunocompetent BALB/c 
mice. This cell line has been extensively used as a robust model 
for metastatic breast cancer known to recruit abundant stroma13. 
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To avoid biases driven by a priori defined markers we used an 
index-sorting and negative-selection-based approach for isolation 
and massively parallel single-cell RNA-sequencing (MARS-seq) 
of CAFs15. We densely sampled cells along critical time points of 
tumor development, 2 weeks (2W) and 4 weeks (4W) after injec-
tion and from lung metastases (mets) spontaneously forming 4–5 
weeks after primary tumor injection. Normal mammary fat pad 
fibroblasts (NMFs) from naive mice served as controls. Tumors 
or normal mammary fat pads were collected, dissociated into 
single-cell suspensions and live cells were stained with cell-surface 
markers: Ter119 (red blood cells), CD45 (immune) and EpCAM 
(epithelial) for negative selection; and podoplanin (PDPN; fibro-
blasts) for index sorting. All live cells negative for Ter119, CD45 and 
EpCAM were index sorted and single-cell processed by MARS-seq 
(Fig. 1a and Extended Data Fig. 1a). We analyzed 8,987 quality con-
trol (QC)-positive single cells from 12 tumor-bearing mice and 3 
naive mice (Extended Data Fig. 1b,c and Supplementary Table 1) 
and used the MetaCell algorithm16 to identify homogeneous and 
robust groups of cells (‘metacells’), resulting in a detailed map of the 
88 most transcriptionally distinct subpopulations (Supplementary 
Table 2). These metacells are organized into four broad classes: 
endothelial cells (characterized by expression of Pecam1), pericytes 
(Rgs5) and two classes of fibroblasts that we termed pCAFs (Pdpn) 
and sCAFs (S100a4; Extended Data Fig. 1d,e).

In silico, we removed Pecam1 and Rgs5 cells and a rare popu-
lation (33 cells) negative for Pecam1, Rgs5, Pdpn and S100a4 
that highly expressed Myc and may have originated from cancer 
cells (see Methods). We continued our analysis with 3,875 Pdpn 
cells and 4,158 S100a4 cells (Fig. 1b, Extended Data Fig. 1d,f and 
Supplementary Tables 3 and 4). Each of these fibroblast populations 
could be further divided into subsets with distinct transcriptional 
profiles (Fig. 1c) and differentially expressed genes (Fig. 1d), repro-
ducible across mice and batches (Extended Data Fig. 1g). Pdpn fibro-
blasts expressed cell-surface PDPN protein (Fig. 1d lower panel) and 
included the NMF (Gsn) subset (Fig. 1e) and six subsets of pCAFs 
(Fig. 1f). Two of these expressed different gene modules involved in 
immune regulation and cell migration (Cxcl12 and Saa3); one had 
a wound-healing signature (Acta2; encoding for α-smooth muscle 
actin (α-SMA)); one had an extracellular fiber organization signa-
ture (Fbn1) and two had inflammatory signatures (Cxcl1 and Il6). 
S100a4-fibroblasts were devoid of NMFs and included two subsets 
of CAFs, albeit these subsets were not as clearly separated from each 
other as the pCAF subsets (Fig. 1d). One subset (Spp1highS100A4low) 
was enriched for signatures of antigen presentation (H2-Aa) and 
ECM remodeling (Fig. 1g). The other subset (Spp1lowS100A4high) was 
enriched in protein-folding and metabolic genes (Hspd1; Fig. 1g).

To validate our single-cell sequencing results we performed bulk 
RNA-seq of sCAFs, pCAFs and NMFs and compared the profiles 
obtained by bulk and single-cell RNA-seq. All groups showed high 
correlation (R > 0.5) between bulk and cognate single-cell profiles 
(Extended Data Fig. 1h). The pCAF and NMF profiles also showed 
high correlation. The sCAFs, however, showed no correlation with 
pCAFs or NMFs (Extended Data Fig. 1h), suggesting that they 
have further diverged from NMF or perhaps have a different ori-
gin altogether. To exclude the potential contribution of cancer cells 
that have undergone epithelial-to-mesenchymal transition (EMT)14 
to the sCAF population, we analyzed the bulk RNA-seq data for 
lineage traces of 4T1 cancer cells (transfected plasmid reads; see 
Methods). This analysis confirmed that while some cancer cells 
may have escaped the negative-selection approach, the majority of 
sCAFs are derived from host mesenchymal cells (Supplementary 
Table 5; Methods).

CAF composition is dynamically reshaped as tumors progress and 
metastasize. Tumor heterogeneity increases with tumor progres-
sion1,17,18. Similarly, we and others have hypothesized that stromal  

heterogeneity increases as tumors progress. Accordingly, our ana
lysis shows that metacell composition varies extensively between 
the different time points (Fig. 1d and Fig. 2a,b). Normal mammary 
fat pads harbored Pdpn+ fibroblasts and were devoid of S100a4+ 
fibroblasts. At 2W after tumor initiation, heterogeneity is observed: 
sCAFs constitute ~30% of the CAF population (Fig. 2b) and the 
majority express metabolic and protein-folding genes (Hspd1). 
The remaining ~70% of CAFs at 2W are Pdpn+, yet in contrast  
to Pdpn+ NMF, pCAFs are highly heterogeneous; more than  
half of them belong to the two immunoregulatory subpopula-
tions (Cxcl12 or Saa3), ~10% express ECM modules (Fbn1) and 
the remaining quarter exhibit a wound-healing profile (Acta2). 
At 4W after tumor initiation, the majority of CAFs are sCAFs 
(~77%), whereas only ~23% are pCAFs. Once again, the compo-
sition of metacells within each class has changed. The dominant 
pCAF populations at 4W are the wound-healing class (Acta2) and 
ECM-organizing pCAFs (Fbn1), whereas the immunoregulatory 
pCAF subpopulations (Cxcl12; Saa3) are diminished (Fig. 2b). The 
sCAF at 4W are composed largely of cells expressing ECM remod-
eling and antigen-presentation profiles (Spp1 and H2-Aa). Lung 
mets contain mostly sCAFs (~70%) and share similar sCAF sub-
populations with primary tumors (Spp1 and H2-Aa; Hspd1) at a 1:1 
ratio. The pCAF population in mets (~30%) is comprised mostly 
of two inflammatory subpopulations (Il6 and Cxcl1) that were not 
observed in primary tumors or in the normal mammary fat pad 
(Fig. 2b). The dynamic shift in CAF composition was confirmed 
by fluorescence-activated cell sorting (FACS) analysis of cell-surface 
PDPN protein expression. As tumors grew, the abundance of 
PDPN+ cells within the stromal (CD45−EpCAM−) population 
decreased and the abundance of PDPN− cells increased (Extended 
Data Fig. 2a).

Pdpn+ fibroblasts diverge into protumorigenic CAFs during 
tumor progression. Different origins have been proposed for CAFs, 
including NMFs, MSCs and adipocytes10–13. Our metacell analysis 
showed that pCAFs (but not sCAFs) share similar patterns of tran-
scription with NMFs (Fig. 1d and Extended Data Fig. 1h), suggest-
ing that pCAFs may have originated from NMFs. To infer the most 
probable transcriptional trajectory for pCAFs we applied Slingshot, 
a computational method for cell lineage pseudo-time inference19. 
Slingshot analysis displayed a gradual transition from NMFs 
through early immunoregulatory and ECM-organizing pCAFs, to 
late immunoregulatory pCAFs, and eventually to wound-healing 
pCAFs (Fig. 2c,d). This trajectory is consistent with the transition 
from normal fibroblasts through 2W to 4W tumors (Extended Data 
Fig. 2b,c). NMFs expressed high levels of Hallmark genes encoding 
membrane bound and extracellular proteins (Ppap2b, Ogn, Timp2 
and Igfbp6). Expression of these genes gradually decreased along 
the trajectory leading to wound-healing pCAF (Fig. 2e, upper row 
and Extended Data Fig. 2d). In parallel, gradual increase in expres-
sion was observed for signature genes involved in cell migration and 
wound healing, such as Timp1, Serpine1, Tpm1 and Acta2 (Fig. 2e, 
lower row and Extended Data Fig. 2d). A third temporal pattern 
was genes whose expression was low in NMFs, high in the ECM/
immunoregulatory pCAFs and low again in wound-healing pCAFs. 
These included Cxcl12, Mmp3, Ccl7 and Saa3 (Fig. 2e, middle row 
and Extended Data Fig. 2d).

sCAFs are transcriptionally distinct from pCAFs and NMFs. 
The sCAFs exhibit global gene-expression profiles that differ from  
those of pCAFs and NMFs (Extended Data Fig. 1f). Moreover,  
we could not find transitional cells linking these fibroblast 
types (Fig. 1d) that would suggest a gradual shift from NMFs to  
sCAFs, as observed for pCAFs. BM-derived MSCs are com-
monly viewed as a source of CAFs10,20. The molecular chaper-
one clusterin (Clu), was recently shown to play tumor-promoting 
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Fig. 1 | Breast CAFs consist of distinct subsets with diverse transcriptional profiles. a, Illustration of the experimental procedure. b,c, Single-cell RNA-seq 
data from CAF and NMF were analyzed and clustered using the MetaCell algorithm, resulting in a two-dimensional projection of 8,033 cells from 15 
mice. The 83 metacells were associated with two broad fibroblast populations (b) and nine functional subclasses (c) annotated and color-coded. d, Gene 
expression of key marker genes across single cells from all subclasses of NMF, pCAF and sCAF. Lower panels indicate the association with subclass, the 
time point and the PDPN index sorting data, showing protein-level intensity in each cell. e–g, Expression of key marker genes for NMF, pCAF and sCAF 
(e); functional annotation for pCAF subclasses (f) and sCAF subclasses (g) on top of the two-dimensional projection of breast CAFs. Colors indicate 
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roles in BM-MSC-derived CAFs recruited to breast tumors in 
mice10. Indeed, Clu, as well as several other MSC markers (Vcam1,  
Cd44, Eng and Nt5e), were differentially upregulated in sCAFs  
compared to pCAFs (Fig. 1d and Fig. 3a). Together with the  
observation that S100a4+ fibroblasts are not found in the normal 
mammary fat pad, this suggests that sCAFs arise from a different 
origin than pCAFs and are recruited to the tumor, perhaps from 
BM-MSCs.

sCAFs show a continuum of cell states bounded by four major 
transcriptional programs. Unlike pCAFs, sCAFs do not seem 
to form discrete subpopulations, but rather a continuum in 
gene-expression space, implying a continuum of cell states. To infer 
biological functions associated with these cell states, we applied the 
Pareto task inference (ParTI) method21,22. ParTI is based on an evo-
lutionary theory suggesting that when cells need to perform mul-
tiple functions, no single gene-expression profile can be optimal 
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for all functions at once. This tradeoff leads to specific patterns in 
the data: individual cells fall into a polyhedron in gene-expression 
space22. Cells near a vertex are specialists at a particular function, 

whereas cells near the middle of the polyhedron are generalists22,23. 
We first applied ParTI on NMFs, 2W and 4W CAFs. Mets clus-
tered separately in this analysis and were therefore excluded (see 
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Methods). The pCAFs clustered with NMFs and sCAFs formed a 
distinct cluster, confirming our metacell analysis (Extended Data 
Fig. 3a). Next we analyzed each cluster separately. pCAFs and NMFs 
formed a one-dimensional continuum (curve) in agreement with the 
Slingshot analysis (Extended Data Fig. 3b). The sCAF gene expres-
sion could not be explained well by a one-dimensional continuum 
(curve) or a two-dimensional planar polygon (Extended Data Fig. 
3c). Rather, sCAF transcriptional states were best described as a 
continuum in a tetrahedron (Fig. 3b and Extended Data Fig. 3d–i). 
At the vertices of this tetrahedron are four transcriptional programs 
representing distinct biological functions (Fig. 3b and Extended 
Data Fig. 3d). Vertex 1 is enriched with cells expressing programs for 
cell division and proliferation (Fig. 3c and Supplementary Table 6).  
Vertex 2 corresponds to protein translation, vertex 3 to adhesion, 
ECM-organization, prosurvival and migration programs and vertex 
4 to immune response programs, in particular antigen presentation 
via major histocompatibility class (MHC) class II genes (Fig. 3c  
and Supplementary Table 6). The distribution of cells within the 
tetrahedron changed with tumor growth (Fig. 3d). The sCAFs in 
2W tumors were located mostly in the space between vertices 1–3, 
indicating that they express transcriptional programs of division, 
adhesion and protein translation (Fig. 3d). Antigen-presentation 
programs were expressed mostly by 4W sCAFs and scarcely by 
2W sCAFs, suggesting a temporally dynamic division of functions 
between sCAFs in breast tumors.

We further tested expression of MHC class II using flow cyto
metry analysis of sCAFs and pCAFs from 4W tumors. The MHC 
class II cell-surface molecules I-A/I-E+ were expressed by ~50% of 
4W sCAFs, but not by pCAFs (Fig. 3e,f).

PDPN and S100A4 mark mutually exclusive, morphologically 
distinct CAFs in mouse breast tumors. To validate our clas-
sification and examine the spatial distribution of the CAF sub-
populations, we performed immunohistochemical staining of 4T1  
tumors from different stages with anti-S100A4 and anti-PDPN. 
Cytokeratin (CK) was used to identify cancer cells. NMFs showed 
very weak expression of S100A4, whereas PDPN+ fibroblasts  
were abundant (Fig. 4a, upper panel). The 2W and 4W tumors  
harbored both PDPN+ and S100A4+ cells. The expression pattern 
of both proteins was different than that of CK, suggesting that  
these are stromal cells (Fig. 4a, middle panels). Mets were rich in 
S100A4+ cells (Fig. 4a, lower panel). PDPN was scarcely expressed 
in mets and strongly expressed in the normal adjacent lung tissue 
(Fig. 4a, lower panel). At all tumor stages, pCAFs were long and 
spindly, resembling the morphology of NMFs and sCAFs were 
smaller. Both classes of CAFs were distributed in all regions of the 
tumor (Fig. 4a).

Multiplexed immunofluorescent (MxIF) staining confirmed that 
S100A4 and PDPN mark different populations of cells (Fig. 4b and 
Extended Data Fig. 4). We saw partial overlap between S100A4 and 
CK staining, mostly in normal mammary fat pads (Extended Data 
Fig. 4a,c). Nevertheless, the majority of S100A4 cells in primary 
tumors and in metastases were CK−, confirming our sequencing 
results and suggesting that PDPN+ cells and S100A4+ cells are dis-
tinct subtypes of CAFs (Fig. 4b and Extended Data Fig. 4).

To test the robustness of our CAF classification we used a dif-
ferent mouse model of TNBC (E0771 cancer cells orthotopically 

injected into the mammary fat pad of immunocompetent C57BL/6 
mice). MxIF staining of 4W tumors showed that, similarly to the 
4T1 model, S100A4 and PDPN mark distinct populations of CAFs 
in E0771 tumors. Neither PDPN nor S100A4 overlapped with CK+ 
cancer cells (Extended Data Fig. 5a–c).

Ly6C+ pCAFs are immunosuppressive. Our sequencing results 
suggested that pCAFs consist of diverse subpopulations performing 
distinct tasks such as immune regulation and wound healing. To 
test the functional relevance of these findings we first performed 
flow cytometry to define markers for the pCAF subpopulations. 
We stained pCAFs from primary 4T1 and E0771 tumors with  
antibodies against Ly6C as a marker for the immunoregulatory 
subpopulation and α-SMA (encoded by Acta2) as a marker for the 
wound-healing subpopulation (Fig. 1d). These proteins marked dis-
tinct subpopulations of cells (Fig. 5a and Extended Data Fig. 5d). 
The Ly6C+α-SMA− subpopulation was most abundant in NMFs and 
decreased as tumors progressed, whereas the Ly6C−α-SMA+ sub-
population was lowest in NMFs and increased as tumors progressed 
(Fig. 5b), similarly to a Ly6C−α-SMA− subpopulation.

Because Ly6C+ pCAFs in the primary tumor expressed an 
immunoregulatory module we next examined their potential to 
suppress T-cell proliferation in vitro. We activated CD8+ T cells by 
CD3/CD28 beads, in the presence of Ly6C+ or Ly6C− pCAFs iso-
lated from 4T1 primary tumors and measured their proliferation 
after 48 h of co-culture by carboxyfluorescein succinimidyl ester 
(CFSE) staining (Fig. 5c,d). We found a significant difference in the 
effect of these two pCAF subpopulations on activated CD8+ T-cell 
proliferation: while Ly6C− pCAFs had no effect on T-cell prolifera-
tion (when normalized to monoculture of activated T cells without 
CAFs; Fig. 5d), Ly6C+ pCAFs caused a 1.5-fold reduction in CD3/
CD28-mediated CD8+ T-cell proliferation (Fig. 5d). The suppres-
sion of T-cell proliferation was accompanied by a significant reduc-
tion in CD8+ T-cell activation, as measured by the increase in CD25 
and CD69 activation markers in CD8+ T cells grown in co-culture 
with Ly6C+ but not with Ly6C− pCAFs (Fig. 5e). These results sup-
port our molecular profiling results and suggest that Ly6C+α-SMA− 
pCAFs suppress CD8+ T-cell activation and proliferation, whereas 
Ly6C− pCAFs do not.

To test whether Ly6C− pCAFs exhibit wound-healing functions, 
we examined their ability to secrete collagen in vitro using Sirius 
Red staining (Methods). We found that Ly6C− pCAFs secreted sig-
nificantly more collagen than Ly6C+ pCAFs, further supporting the 
transcriptional profiling results, and suggesting that Ly6C− pCAFs 
may have wound-healing functions (Fig. 5f,g).

S100A4 and PDPN mark distinct stromal populations in human 
breast tumors. To test the clinical relevance of our findings, we  
performed MxIF staining for PDPN and S100A4 in human  
estrogen receptor positive (ER+) breast cancer and TNBC tissue  
samples. CK staining was performed to mark epithelial cancer  
cells (Fig. 6a). We found that PDPN+ cells and S100A4+ cells are  
major constituents of human breast cancer stroma and exhibited  
very low overlap with CK staining (Fig. 6a,b and Extended Data  
Fig. 6a,b). A minor overlap was observed between S100A4 and  
CD45 staining, in cells with mesenchymal morphology (Extended  
Data Fig. 6c). Similarly to our mouse models, PDPN+ cells and 

Fig. 4 | PDPN and S100A4 proteins are expressed on distinct types of breast CAFs in mouse tumors. a, Consecutive formalin-fixed paraffin-embedded 
(FFPE) tissue sections of tumors, mets or normal mammary fat pads were immunostained with antibodies against the indicated proteins or stained 
with hematoxylin & eosin (H&E), n = 3 mice per time point. Representative images are shown. All images were collected at the same magnification and 
are presented at the same size. Scale bar, 100 μm. For each panel, regions marked by rectangles are shown as 2.5× insets in black dashed rectangles. 
A dashed red line on the H&E marks the metastatic region in the lung. b, MxIF staining was performed with antibodies against the indicated proteins, 
n = 3 mice per time point. Representative images of 2W and 4W tumor FFPE sections are shown. Scale bar, 50 μm, inset scale bar, 17 μm. DAPI, 
4,6-diamidino-2-phenylindole.
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S100A4+ cells were mutually exclusive (Fig. 6b). These observations 
suggest that PDPN and S100A4 mark distinct subtypes of CAFs in 
human breast tumors.

We observed partial segregation in the spatial organization of 
CAFs in human tumors (Fig. 6a). Both in ER+ and TN samples, a 
subset of pCAF was found immediately adjacent to CK+ cancer cells 
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or infiltrating the cancerous region. The rest of the pCAFs were  
dispersed in stromal regions, mixed with sCAFs. In contrast, sCAFs 
were less frequently found immediately adjacent to cancer cells  
(Fig. 6a, insets).

A subset of human sCAFs expresses MHC class II, whereas a 
subset of pCAFs expresses α-SMA. To further characterize human 
sCAFs and pCAFs, we tested several of the markers for sCAF and 
pCAF subpopulations found in our single-cell RNA-seq data by 
MxIF in a small cohort of patients with TNBC. α-SMA was widely 
expressed by pCAFs but not by sCAFs (Fig. 6c,e,f and Extended 
Data Fig. 6b). The MHC class II cell-surface receptor HLA-DR 
marked a subset of sCAFs (Fig. 6c–e and Extended Data Fig. 6a), 
but not pCAFs. NT5E (aka CD73) localized to subsets of sCAFs as 
well as pCAFs (Fig. 6c–e and Extended Data Fig. 6a). These results 
support our findings from the 4T1 murine model and provide 
combinations of markers to detect distinct CAF subpopulations in 
human patients.

S100A4/PDPN ratio is correlated with disease outcome in two 
independent cohorts of patients with breast cancer. To study the 
clinical significance of these findings, we co-stained and scored 
PDPN, S100A4 and CK immunostaining in a cohort of 72 patients 
with TNBC with long-term clinical follow up (Supplementary Table 
7). For each patient, we stained three cores of the tumor, calculated 
the average area of positive staining for each marker (Fig. 7a), as 
well as ratios between the three markers and evaluated whether the 
staining scores correlate with each other (Extended Data Fig. 7a) and 
with disease outcome. High CK expression led to increased hazard of 
recurrence, as expected and significantly correlated with poor survival 
(P = 0.028; Supplementary Table 8). Next we evaluated our stromal 
markers. PDPN levels significantly correlated with disease outcome 
(P = 0.013; Supplementary Table 8); patients whose tumors had high 
PDPN levels had shorter recurrence-free survival (P = 0.026; Fig. 7b),  
as well as overall survival (P = 0.0011; Extended Data Fig. 7b).  
S100A4 on its own was not significantly correlated with disease out-
come in this cohort, yet its hazard ratio value was smaller than 1 
(while the hazard ratio of PDPN was greater than 1; Supplementary 
Table 8). We therefore asked whether evaluation of the S100A4/
PDPN ratio could improve our ability to predict patient outcome. 
Indeed, we observed a striking correlation between high S100A4/
PDPN ratios and increased recurrence-free survival (P = 0.0032) and 
overall survival (P = 0.00015; Fig. 7c and Extended Data Fig. 7c).

To test for possible correlation between S100A4/PDPN ratio  
and T-cell infiltration we stained and scored CD3 (Extended Data 
Fig. 8a,b). We found no significant correlation between CD3 and dis-
ease outcome (Supplementary Table 8), nor did CD3 staining corre-
late with any of the other cell markers tested (Extended Data Fig. 7a).

To quantitatively test the observation that pCAFs infiltrate the 
cancerous region more than sCAFs we defined regions of dense 
stroma versus cancer-adjacent regions based on CK staining and 
calculated the average area of positive staining for S100A4 and 
PDPN in each region (Extended Data Fig. 7d). The pCAFs were 
~3-times more abundant in cancer-adjacent regions than in dense 
stroma regions (Fig. 7d and Extended Data Fig. 7e). The sCAFs 
infiltrated the cancerous region significantly less than pCAFs and 
the average ratio of cancer-adjacent S100A4/dense-stromal S100A4 
was 0.8 (Fig. 7d and Extended Data Fig. 7e).

Our initial observation that S100A4 and PDPN stain not only 
TNBC but also ER+ breast cancer samples suggested that S100A4/
PDPN ratio may be a general marker of disease outcome in breast 
cancer. To test this we stained and scored PDPN, S100A4 and CK  
in an independent cohort of 293 patients with breast cancer from  
the METABRIC study24 (Supplementary Table 9). In this cohort of 
mixed breast cancer subtypes, S100A4/PDPN ratios significantly 
correlated with disease progression (P = 0.025; Fig. 7e). Similarly 
to the TNBC cohort, high S100A4/PDPN ratios were associated 
with increased recurrence-free survival in the METABRIC cohort  
(Fig. 7e). The spatial distribution of sCAFs and pCAFs was also  
similar in the two cohorts, with higher average cancer-adjacent 
PDPN/dense-stromal PDPN than cancer-adjacent S100A4/dense- 
stromal S100A4 (Extended Data Fig. 7f,g).

High S100A4/PDPN ratios are associated with BRCA muta-
tions in TNBC. A substantial fraction of patients with TNBC carry  
mutations in BRCA genes, in particular BRCA1 (ref. 25) and BRCA 
mutations frequently lead to TNBC26. While the METABRIC  
cohort had very few patients with BRCA mutations, in the 
TNBC cohort, 20 of 45 patients (with documented BRCA status)  
carried such mutations (Supplementary Tables 7 and 9). These 
patients exhibited increased T-cell infiltration (measured by CD3 
staining) compared to patients with wild-type BRCA (Extended 
Data Fig. 8c), yet neither T-cell infiltration nor BRCA status cor-
related with survival (Extended Data Fig. 8d and Supplementary 
Tables 8 and 10).

We therefore tested for possible associations between BRCA  
status, CAF marker expression and survival (Fig. 8a–c and Extended 
Data Fig. 8b). PDPN levels and S100A4/PDPN ratio significantly 
correlated with BRCA1/2 mutational status (Fig. 8b,c). Patients 
with mutant BRCA1/2 exhibited significantly lower PDPN stain-
ing and higher S100A4/PDPN ratios compared to BRCA wild-type 
patients (Fig. 8b,c). Moreover, multivariate Cox regression analysis 
of recurrence-free survival, considering S100A4/PDPN ratio and 
BRCA mutational status showed a strong interaction between the 
two parameters (Supplementary Table 10). Indeed, when stratified 
according to BRCA status as well as S100A4/PDPN ratio a clear 

Fig. 5 | Ly6C+ pCAFs suppress CD8+ T-cell proliferation, in vitro. a,b, FACS analysis of Ly6C and α-SMA expression in CD45−EpCAM−PDPN+ cells freshly 
collected from normal mammary fat pads, 2W tumors and 4W tumors and immediately fixed. Representative flow cytometry plots from one mouse are 
shown in a and the results are quantified in b, n = 6 mice for NMF and 2W; n = 8 mice for 4W. Data are combined from three independent experiments 
and are presented as mean and analyzed using two-way ANOVA followed by Tukey’s multiple comparisons test. Pint – P interaction between time and 
population. c,d, CD45−EpCAM−PDPN+ cells from 4W tumors were sorted to Ly6C+ versus Ly6C− populations, which were then incubated in vitro at a 
1:1 ratio with CD8+ T cells activated by CD3/CD28 beads and marked by CFSE for 48 h. Representative FACS plots of CFSE signals from one experiment 
are shown in c and the results from n = 5 independent experiments, each with different mice, normalized to the average proliferation with no CAFs per 
experiment are presented in d as mean ± s.d., analyzed utilizing a two-sided Student’s t-test. e, Flow cytometry analysis of CD25 and CD69 activation 
markers in CD8+ T cells activated and co-cultured with pCAFs as described in c or incubated in monoculture with and without activation. The experiment 
was repeated three times, each with different mice. Results from one representative experiment are shown in e. For nonactivated CD8+ and activated 
CD8+, n = 3; for activated CD8+ with Ly6C+ CAFs, n = 4; for activated CD8+ with Ly6C− CAFs, n = 5 independent culture wells; mean ± s.e.m. are shown 
and data were analyzed by two-way ANOVA followed by Tukey’s multiple comparisons test. f,g, CD45−EpCAM−PDPN+ cells from 4W 4T1 tumors were 
sorted to Ly6C+ versus Ly6C− populations, which were then grown to confluence in vitro, passaged once, allowed to secrete collagen for 4 d and stained 
with Sirius Red (see Methods). The experiment was repeated four times, each with different mice. Results from one representative experiment are shown 
in f. Quantification of Sirius Red staining in a representative experiment is shown in g, n = 4 Ly6C+; n = 3 Ly6C− independent culture wells. Mean ± s.e.m. is 
shown and data were analyzed by a two tailed Student’s t-test. Scale bar, 500 μm, inset scale bar, 250 μm.

Nature Cancer | www.nature.com/natcancer



ArticlesNATUrE CAncEr

separation appeared; the S100A4/PDPN ratio was a significant  
classifier of recurrence-free survival in carriers of BRCA mutations, 
but not in patients with wild-type BRCA (Fig. 8d).

Discussion
Intratumor heterogeneity is a critical driver of tumor evolution and 
the main source of therapeutic resistance18,27,28. Our understanding 
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of how the TME and in particular CAFs, contribute to this hetero-
geneity is still lacking. Here we find that breast CAFs consist of 
diverse subpopulations that change over the course of tumor growth 

and metastasis. These subpopulations cluster into two prototype 
CAF subtypes, which we term pCAF and sCAF, based on mutu-
ally exclusive expression of PDPN in pCAFs and S100A4 in sCAFs. 
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Establishing the relevance of our experimental findings to human 
disease, pCAFs and sCAFs are major constituents of human breast 
cancer stroma and the ratio of S100A4/PDPN expression is a clas-
sifier of disease outcome in two independent cohorts of patients.

Recent studies used RNA-seq approaches to characterize the 
TME in different types of cancer10,14,29–33. In pancreatic cancer, two 
spatially separated and reversible subtypes of CAFs have been iden-
tified, myofibroblasts (myCAFs), located immediately adjacent to 
cancer cells and inflammatory fibroblasts (iCAFs), located within 
the dense pancreatic tumor stroma32. In breast cancer, a popula-
tion of matrix remodeling CAFs similar to myCAF was identified 
and termed mCAFs14. Recently, a third population of pancreatic 
CAFs, antigen-presenting CAFs (apCAFs) was identified30. Both 
myCAF and iCAF share similarities with subpopulations of the 
pCAFs that we have identified. In particular, iCAFs share com-
mon genes with the inflammatory subpopulations of pCAFs (Cxcl1, 
Il6), and myCAFs are similar to wound-healing pCAFs (Acta2). In 
agreement with our analysis suggesting that pCAFs originate from 
tissue-resident fibroblasts, both myCAFs and iCAFs can be derived 
from tissue-resident pancreatic stellate cells. The apCAFs, on the 

other hand, share common genes with sCAFs, in particular with the 
antigen-presenting sCAFs (H2-Ab1, CD74, Slpi), suggesting that 
these CAFs may serve similar roles in different tumor types30.

In breast cancer, CAFs were recently classified into four 
subclasses with different spatial localization based on a pre-
defined set of cell-surface markers9. CAF-S3 in that report were 
S100A4Highα-SMAlow, and localized away from cancer cells, as 
opposed to CAF-S4 which were S100A4Lowα-SMAHigh and local-
ized closer to cancer cells9. CAF-S3 in that study was not molecu-
larly analyzed; however, the localization further away from cancer 
cells (compared to S100A4Lowα-SMAHigh CAF) may suggest simi-
larities between CAF-S3 and sCAFs. Another report identified 
S100A4Highα-SMAlow CAFs originating from tissue-resident adipo-
cytes12. While those CAFs do not share a common morphology or 
common molecular characteristics with the sCAFs identified here, 
both reports highlight the possibility that CAFs originate from cells 
other than tissue-resident fibroblasts.

Indeed, CAFs have heterogeneous origins10–14. Three distinct 
computational approaches (MetaCell, Slingshot and ParTI) point to 
NMF as the most probable origin of pCAFs. The origin of sCAFs 
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is less clear. While we cannot rule out the possibility that sCAFs 
originate from NMFs, this is unlikely because their transcriptional 
makeup is disconnected. It is also unlikely that sCAFs originated 
from cancer cells that have undergone EMT, though a minority 
of cancer cells may have escaped through the negative-selection 
sequencing approach. Rather, we postulate that sCAFs originate 
from a different mesenchymal source, perhaps BM-MSCs10,34,35. 
The sCAFs are enriched for several classic MSC markers. 

Moreover, Clu, recently reported to play a tumor-promoting role 
in BM-MSC-derived CAFs10, is among the most differentially 
upregulated genes in sCAFs (compared to pCAFs). These findings 
support the hypothesis that sCAFs are derived from MSCs that are 
recruited to the tumor and differentiate into CAFs. In the tumor, 
sCAFs dynamically shift between several transcriptional programs; 
cell division, protein translation and adhesion are expressed in early 
tumors. As tumors progress, sCAFs are dynamically rewired and at 
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4W, a subpopulation expressing MHC class II antigen-presentation 
genes takes dominance. MHC class II molecules are constitutively 
expressed on professional antigen-presenting cells (APCs). In other 
cell types, including fibroblasts, the expression of MHC class II can 
be induced by stimuli such as interferon-γ36,37, as shown for syno-
vial fibroblasts in inflamed joints of rheumatoid arthritis38. The 
apCAFs recently described in pancreatic cancer30 did not express 
co-stimulatory molecules. Similarly, we could not detect expression 
of co-stimulatory molecules in sCAFs. Whether and how activa-
tion of MHC class II in nonprofessional APCs such as sCAFs affects 
immune responses will be the subject of future investigation.

Metastatic CAFs are poorly defined. In our mouse model, pri-
mary tumor CAFs and metastatic CAFs clustered together into the 
main CAF subtypes, suggesting that both subtypes are present in 
the primary site and in the metastatic site. Nevertheless, primary 
and metastatic CAFs exhibited distinct subpopulations within each 
subtype, in particular within pCAFs. These changes are probably 
driven, to some extent, by the different environment in the lung 
compared to the mammary tissue. Given the observed shift between 
2W and 4W primary tumor CAFs, however, our results suggest  
that these changes reflect the dynamic rewiring of CAFs along 
tumor progression, beginning at the primary site and continuing as 
tumors metastasize.

The coexistence of different CAF populations and their dynamic 
rewiring has prognostic and potentially therapeutic implications. In 
two independent patient cohorts, encompassing together all sub-
types of breast cancer, those with higher sCAF/pCAF ratios had 
markedly improved survival. In the TNBC cohort, high ratios of 
sCAF/pCAF correlated not only with survival but also with BRCA 
mutations. BRCA mutations frequently lead to TNBC and the DNA 
damage associated with these mutations leads to increased somatic 
mutational load and higher T-cell infiltration26,39. It is plausible that 
the immunoregulatory activity of pCAFs inhibits T-cell activation 
whereas antigen-presenting sCAFs activate the immune system, 
leading to improved clinical outcomes. Our findings highlight the 
need to define and target deleterious CAF subpopulations, while 
enriching potentially beneficial populations, within patient cohorts 
with defined genetic and transcriptional landscapes.

Methods
Ethics statement. All clinical data were collected following approval by the Sheba 
Medical Center Institutional Review Board (IRB), protocol no. 8736-11-SMC 
or Ministry of Health (MOH) IRB approval for the Israel National Biobank for 
Research (MIDGAM), protocol no. 130-2013 or as detailed previously40. All 
animal studies were conducted in accordance with the regulations formulated by 
the Institutional Animal Care and Use Committee (protocol nos. 40471217-2; 
09720119-1; 00470120-2).

Human patient samples. Tumor sections from five patients with ER+ and six 
patients with TN breast cancer were obtained from MIDGAM under MOH 
IRB no. 130-2013 and IRB no. 8736-11-SMC and a TMA-containing cores from 
72 patients with TNBC (three cores per patient), with matching H&Es and 
whole-tissue sections from a subset of 12 patients from this cohort, were retrieved 
from the archives of Sheba Medical Center under IRB no. 8736-11-SMC. All 
clinical data were collected following appropriate ethical approvals. For the TNBC 
cohort approval was given by the Sheba Medical Center IRB (protocol no. 8736-
11-SMC) with full exemption for consent form for anonymized samples. For 
samples collected from MIDGAM, MOH IRB approval was obtained (protocol no. 
130-2013). These samples were collected from patients who provided informed 
consent for collection, storage and distribution of samples and data for use in 
future research studies.

A TMA containing a subset of the molecular dataset of the METABRIC study24 
was obtained under appropriate ethical approval from the IRB for the use of 
biospecimens with linked pseudo-anonymized clinical data40.

Mice. BALB/c and C57BL/6 mice were purchased from Harlan Laboratories and 
maintained under specific-pathogen-free conditions at the Weizmann Institute of 
Science (WIS) animal facility.

Cancer cell lines. The 4T1 cells expressing firefly luciferase (pLVX-Luc) were 
kindly provided by Z. Granot (HUJI). E0771 cells were kindly provided by R. Alon 

(WIS). Green fluorescent protein (GFP)-expressing 4T1 cells were generated using 
the FUW-GFP vector and mCherry-luc-expressing E0771 cells were generated 
using a luc2a-mcherry vector. The 4T1 and E0771 cells were cultured in Dulbecco’s 
modified Eagle’s medium (DMEM; Biological Industries, 01-052-1A) with 10% 
fetal bovine serum (FBS; Invitrogen).

Orthotopic injection to the mammary fat pad. The 8W-old BALB/c or C57BL/6 
female mice were injected under anesthesia with 100,000 4T1-luc cells or 600,000 
E0771 cells in ice-cold PBS, into the lower left mammary fat pad.

Normal mammary fat pad isolation and dissociation. Mammary fat pads 
were collected from nontumor-bearing BALB/c females (8W old for single-cell 
analysis, 12W old for bulk sequencing), tissue was minced and dissociated 
using a gentleMACS dissociator, in the presence of enzymatic digestion solution 
containing 1 mg ml−1 collagenase II (Merck Millipore, 234155), 1 mg ml−1 
collagenase IV (Merck Millipore, C4-22) and 70 U ml−1 DNase (Invitrogen, 
18047019) in DMEM. The samples were filtered through a 70-μm cell strainer 
into ice-cold MACS buffer (PBS with 0.5% BSA) and cells were pelleted by 
centrifugation at 350g for 5 min at 4 °C.

Primary tumor isolation and dissociation. At 14 or 28 d after 4T1-luc injection, 
animals were killed, and tumors were excised, dissociated, minced and incubated 
with enzymatic digestion solution containing 3 mg ml−1 collagenase A (Sigma 
Aldrich, 11088793001) and 70 U ml−1 DNase in RPMI 1640 (Biological Industries, 
01-100-1A) for 20 min at 37 °C. To enrich for stromal cells, single-cell suspensions 
were incubated with anti-EpCAM (Miltenyi, 130-105-958) and anti-CD45 
(Miltenyi, 130-052-301) magnetic beads, transferred to LS columns (Miltenyi, 130-
042-401) and the stromal enriched (CD45, EpCAM depleted) flow-through was 
collected and pelleted.

Lung metastases isolation and dissociation. To allow the growth of >1 mm 
lung metastases, primary tumors were surgically removed under anesthesia 2W 
after injection of 4T1-luc cells to the mammary fat pad. The mice were imaged 
every 4–6 d by an in vivo imaging system to detect luciferase-positive lung 
metastases. At 2–3 weeks after primary tumor removal, the animals were killed, 
metastases-bearing lungs were excised and metastases were isolated from the lungs 
and dissociated in gentleMACS C tubes with an enzymatic digestion solution 
containing collagenase A 1.5 mg ml−1, dispase II 2.5 U ml−1 (Sigma Aldrich, D4693) 
and DNase I 70 U ml−1 in RPMI 1640.

Flow cytometry and sorting. Staining was performed on single cells with 
antibodies detailed in Supplementary Table 11 for 30 min on ice. Single-stain 
controls were used for compensation of spectral overlap between fluorescent dyes. 
Propidium iodide was added shortly before samples were sorted. Cells were sorted 
with a BD FACSAria Fusion machine and data was analyzed using FlowJo software 
(Tree Star Inc.).

Single-cell index sorting. Stained cells were single-cell sorted as previously 
described15. Briefly, cells were sorted into 384-well barcoded capture plates 
containing 2 µl of lysis solution and barcoded poly(T) reverse-transcription 
primers for single-cell RNA-seq15. The FACS Diva v.8 ‘index sorting’ function 
was activated to record marker levels of each cell and the intensities of all FACS 
markers were recorded and linked to each cell’s position within the 384-well plate41. 
Four empty wells per 384-well plate were kept as a no-cell control for data analysis. 
Plates were spun down immediately after sorting, snap frozen on dry ice and stored 
at −80 °C until processing.

Library preparation for single-cell RNA-seq. Single-cell MARS-seq libraries were 
prepared as previously described15. In brief, messenger RNA from sorted cells was 
barcoded, converted into complementary DNA and pooled. Pooled samples were 
linearly amplified by T7 in vitro transcription and the resulting amplified RNA was 
fragmented and converted into a sequencing-ready library by tagging with pool 
barcodes and Illumina adaptor sequences during ligation, reverse transcription and 
PCR. Library quality and concentration were assessed as described15.

Low-level processing and filtering. All RNA-seq libraries were sequenced using 
Illumina NextSeq 500 at a median sequencing depth of 28,114 reads per single 
cell. Sequences were mapped to the mouse genome (mm10), demultiplexed and 
filtered as previously described15, extracting a set of UMIs that define distinct 
transcripts in single cells for further processing. We estimated the level of spurious 
UMIs in the data using statistics on empty MARS-seq wells median noise (2.6%). 
Mapping of reads was performed using HISAT v.0.1.6 (ref.42); reads with multiple 
mapping positions were excluded. Reads were associated with genes if they were 
mapped to an exon, using the University of California, Santa Cruz genome browser 
as reference. Exons of different genes that shared genomic position on the same 
strand were considered a single gene with a concatenated gene symbol. Cells with 
fewer than 1,000 UMIs were discarded from the analysis. After filtering, cells 
contained a median of 2,733 unique molecules per cell. All downstream analysis 
was performed in R (v.3.6.0).
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Data processing and clustering. The MetaCell pipeline43 was used to derive infor
mative genes and compute cell-to-cell similarity, to compute k-nearest-neighbor 
graph covers and derive distribution of RNA in cohesive groups of cells (or 
metacells) and to derive strongly separated clusters using bootstrap analysis 
and computation of graph covers on resampled data. Default parameters were 
used unless otherwise stated. Clustering was performed on the CD45−EpCAM− 
(Extended Data Fig. 1a) compartment of 15 samples. Cells with high expression 
of Hbb-b1 or Ptprc were regarded as contaminants of red blood or immune cells, 
respectively and were discarded from subsequent analysis. Following clustering of 
the remaining cells (Extended Data Fig. 1d), cells with high expression of Pecam1 
and Rgs5 were identified as endothelial cells and pericytes, respectively and 
discarded from further analysis. In addition, a group of 33 cells with markedly high 
expression of Mki67 and Myc was assumed to have contamination with cancer cells 
and removed from further analysis.

Metacell clustering was performed over the top 10% most variable genes (high 
var/mean), with total expression over 50 UMIs and >2 UMIs in at least three cells, 
resulting in 1,017 feature genes. Resulting clusters were filtered for outliers and cells 
with more than fourfold deviation in expression of at least one gene were marked 
as outliers and discarded from further analysis. This resulted in 43 outlier cells and 
8,033 cells were retained for further analysis. To annotate the resulting metacells into 
cell types, we used the metric FPgene,mc, which signifies for each gene and metacell 
the fold change between the geometric mean of the gene within the metacell and 
the median geometric mean across all metacells. We used this metric to ‘color’ 
metacells for the expression of subset-specific genes such as Gsn and S100a4. Each 
gene was given a FP threshold and a priority index. The selected genes, priority and 
fold-change threshold parameters are as detailed in Supplementary Table 12.

GO enrichment analysis. Gene-set enrichment analysis was performed using 
Metascape (http://metascape.org).

Trajectory finding. To infer trajectories and align cells along developmental 
pseudo-time, we used Slingshot19 and applied it on pCAFs of the primary tumor 
(2W, 4W). We chose a set of differential genes between the clusters (false discovery 
rate (FDR)-corrected chi-squared test, q < 10−3, fold change >2). We performed 
principal-component analysis (PCA) on the log-transformed UMIs, normalized to 
cell size. We ran Slingshot on the top five principal components, with Pdpn+ NMFs 
as the starting cluster.

Pareto analysis. sCAF single-cell data. The gene-expression dataset of NMF, 2W 
and 4W CAFs included 21,948 genes and 6,587 cells (3,067 sCAFs and 3,521 
NMF and pCAFs). In PCA analysis of the sCAFs, cells from 2W and 4W time 
points formed a continuum, whereas mets formed a separate cluster. We therefore 
excluded mets from ParTI analysis, which focuses on continuous expression 
patterns. We considered cells with a total of at least 3 × 103 UMIs and genes with at 
least 103 UMIs, totaling 2,292 cells and 790 genes. Each cell was downsampled to 
103 UMIs and each gene was log-transformed and centered by subtracting its mean.

Data dimensionality. To determine the dimensionality of the data for ParTI, we 
used Principal Convex Hull analysis (PCHA) to find the best-fit polytopes with 
k = 3–7 vertices. We calculated the variance of the vertex positions by PCHA on 
bootstrapped data (resampling the cells with returns). The variance for k = 3 and 
4 is low and rises sharply for k > 4 (Extended Data Fig. 3f), indicating that it is not 
possible to determine the positions of more than four vertices with high reliability. 
In agreement with the three-dimensionality of the tetrahedron, PCA analysis 
indicated that the first three principal components explain much more variance 
than higher order principal components (Extended Data Fig. 3e). We concluded 
that four vertices and the first three principal components were the appropriate 
choice for this analysis.

Tetrahedron significance. The variation in the vertex positions of the real data 
(bootstrapping) was much smaller than the variation of the vertex positions in the 
best-fit tetrahedron (PCHA) for 1,000 shuffled datasets (P < 0.001; Extended Data 
Fig. 3g,h). We further tested the statistical significance of the tetrahedron by the 
t-ratio test as described previously21,44. The observed t ratio was significantly larger 
than the t ratios of shuffled datasets (P = 6 × 10−3; Extended Data Fig. 3i).

Enrichment calculation and GO analysis. We defined enriched genes for each 
vertex by calculating the Spearman rank correlation between the gene’s expression 
and the Euclidean distance of cells from the vertex. We call a gene enriched if its 
expression shows a correlation coefficient <−0.2 with a statistically significant 
P value controlled for multihypothesis testing by an FDR correction using the 
Bonferroni procedure with a threshold of 10−5. GO analysis was performed using 
MathIOmica45 with a cutoff of at least three genes for each GO term. To address 
circularity concerns stemming from using gene expression both to infer the 
position of the vertex and their functions, we use a leave-one-out procedure: for 
each enriched gene, we recompute the position of the vertices after removing the 
gene. We then determine which samples are closest to the new vertices and test 
whether the gene is still significantly enriched close to the vertex by the same 
method as above.

Vertex temporal ordering. We computed the relative representation of cells from 
each time point (2W, 4W) between the four vertices (Fig. 3d). Cells from each time 
point were downsampled to reach the same number (300) and the fraction of each 
time point in the 100 cells closest to each archetype was calculated. Error bars were 
calculated by bootstrapping (103).

Bulk RNA-seq. The 4W tumors or normal mammary fat pads from four mice 
each were excised, 104 cells were sorted from each population as described for 
single-cell RNA-seq, with the addition of PDPN as a positive-selection marker 
for pCAFs (Extended Data Fig. 1a). NMFs were taken from the CD45−/EpCAM− 
population without further selection. The sCAFs were collected based on negative 
selection for all markers (CD45−EpCAM−PDPN−). The cells were collected 
directly into lysis/binding buffer (Life Technologies) and mRNA was isolated 
using Dynabeads oligo (dT) (Life Technologies). RNA-seq was performed as 
previously described15. Libraries were sequenced on an Illumina NextSeq 500 
machine and reads were aligned to the mouse reference genome (mm10) using 
STAR v.2.4.2a46. Duplicate reads were filtered if they aligned to the same base and 
had identical UMIs. Read count was performed with HTSeq-count47 in union 
mode and counts were normalized using DEseq2 (ref. 48). Representative samples 
from each subpopulation were used for Pearson correlation matrix (Extended 
Data Fig. 1h).

Tracing of host versus cancer markers in sCAFs. To test for presence of 4T1 
cells in the negatively selected sCAF population we traced the LTR of a luciferase 
plasmid expressed in these cells. While this sequence could not be detected by 
single-cell RNA-seq (due to polyA selection) we could detect it by bulk RNA-seq. 
We therefore counted the number of reads mapped to the LTR in different 
populations from bulk FACS sort and normalized these to the number of reads 
mapped to the house keeping gene actin. The normalized LTR reads were 44-fold 
more abundant in bulk EpCAM+ cells from the tumor (that may also contain 
normal epithelial mammary cells) than in sCAFs (0.011 in EpCAM+ versus 0.00027 
in sCAFs). We could not detect LTR reads in pCAFs and NMFs. These results 
suggest that the majority of sCAF do not originate from 4T1 cancer cells, however 
there is a low level of contamination by 4T1 cells, at least in the bulk population.

To validate these results we expressed GFP in 4T1 cells, injected these into  
the mammary fat pad of mice, sorted tumors by FACS to remove PDPN+ and 
CD45+ cells and further sorted for bulk RNA-seq of the following populations:  
(1) GFP+EpCAM+ (expected to include 4T1 cells); (2) GFP+EpCAM− (expected 
to include 4T1 cells that may have undergone EMT); (3) GFP−EpCAM+ (expected 
to include host epithelial cells); and (4) GFP−EpCAM− (expected to include sCAF, 
as well as a minor population of endothelial cells and pericytes). Bulk sequencing 
and differential gene-expression analysis confirmed that GFP+EpCAM+, 
GFP+EpCAM− and GFP−EpCAM+ populations exhibited similar patterns of 
gene expression, whereas GFP−EpCAM− cells were distinct, suggesting that 
GFP−EpCAM−PDPN−CD45− cells do not originate from cancer cells, nor do they 
resemble normal epithelial cells (Supplementary Table 5). The top 20 differentially 
upregulated genes in GFP−EpCAM− cells (sCAFs) compared to GFP+EpCAM+ 
cells (4T1 cells) contain classic stromal genes such as Cxcl12, Col3a1 and Ccl4 
(Supplementary Table 5). The classic epithelial marker Krt14 is among the 
most differentially downregulated genes in GFP−EpCAM− cells compared to 
GFP+EpCAM+ cells (Supplementary Table 5).

FACS for functional assays with pCAFs. The 4W 4T1-luc primary tumors were 
dissociated into single-cell suspensions, incubated with red blood cell lysis buffer 
(BioLegend 420301) and depleted of CD45+ and EpCAM+ cells as described above. 
For pCAF enrichment, the CD45 and EpCAM depleted fraction was incubated 
with PDPN–biotin antibody and the PDPN-enriched cell suspension was isolated 
with anti-biotin magnetic beads (Miltenyi, 130-090-485). The cells were stained for 
Ter119-PB, CD45-BV711, EpCAM-AF488, PDPN–APC and Ly6C-PerCP/Cy5.5. 
PDPN+ cells were gated as described in Extended Data Fig. 1a and sorted into 
Ly6C+ and Ly6C− populations.

CD8+ T-cell proliferation and activation assay. Overall, 5 × 104 Ly6C+ or Ly6C− 
pCAFs were plated in 96 wells in RPMI 1640 supplemented with 10% FBS. Three 
days later, CD8+ T cells were isolated from normal spleens by a positive-selection 
kit (CD8a (Ly-2) Microbeads, mouse, Miltenyi 130-117-044), stained with 2 μM 
CFSE and incubated with CD3/CD28 Dynabeads with or without Ly6C+ or Ly6C− 
pCAFs in lymphocyte medium (RPMI 1640, 10% FBS, 1% MEM NEAA, 1% 0.5 M 
HEPES buffer, 1% l-glutamine, 1% sodium pyruvate and 0.0004% βM-EtOH 
(Biological Industries)). After 48 h, magnetic beads were removed and cells were 
analyzed by flow cytometry. CD25-BV711 and CD69-APC antibodies were used 
to determine CD8+ T-cell activation levels, Ghost-Dye-Violet 450 (TONBO) 
was used to exclude dead cells and CFSE was used to determine CD8+ T-cell 
proliferation. FACS analysis was performed using Kaluza software v.2.1  
(Beckman Coulter).

Flow cytometry of pCAFs, sCAF and NMF markers. Tissues were collected and 
dissociated into single-cell suspensions as described above. For pCAF intracellular 
staining, cells were fixed with 4% PFA in PBS for 10 min, washed  
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and resuspended in permeabilization/washing buffer (PBS (calcium and 
magnesium free), 0.1% Tween 20 (BIO BASIC) and 1% BSA) and incubated for 
20 min at room temperature. For 4T1 tumors, cells were stained with CD45-BV711, 
EpCAM-PE/Cy7, PDPN–APC and Ly6C−PerCP/Cy5.5, fixed, permeabilized and 
intracellularly stained with α-SMA–FITC. E0771-mCherry tumors were stained 
with Ghost-Dye-Violet 450 viability dye (TONBO), CD45−BV711, PDPN–APC, 
Ly6C-PerCP/Cy5.5 and then fixed, permeabilized and intracellularly stained 
with α-SMA–FITC. For sCAF marker staining, live cells were stained with 
CD45-BV711, EpCAM-AF488, PDPN–APC and I-A/I-E-APC/Cy7.

Collagen deposition measurement in vitro. PDPN+Ly6C+ or Ly6C− CAFs were 
seeded after sorting until reaching confluency and seeded in at least three technical 
replicates in a concentration of 2 × 105 ml−1 in RPMI complete medium. The cells 
were left for 4 d in culture to assure confluence before preforming collagen content 
measurement using a commercial Sirius Red collagen staining kit (Chondrex). 
Images were taken with a Leica DMI8 wide-field (inverted) microscope, objective 
×10/0.25, using a DFC310FX color camera.

Immunohistochemistry of mouse tissues. FFPE 4-μm sections of normal 
mammary fat pads, tumors or metastases were deparaffinized, treated with 1% 
H2O2 and antigen retrieval was performed with Tris-EDTA buffer (pH 9.0). 
Slides were blocked with 10% normal horse serum (Vector Labs, S-2000) and 
the antibodies listed in Supplementary Table 11 were used. Visualization was 
achieved with 3,30-diaminobenzidine as a chromogen (Vector Labs kit SK4100). 
Counterstaining was performed with Mayer hematoxylin (Sigma Aldrich MHS-
16). Images were taken with a Nikon Eclipse Ci microscope.

Immunofluorescent staining of mouse and human tissues. Whole FFPE 
sections from mouse and human tumors and cores from the human TNBC and 
METABRIC TMAs, were deparaffinized and incubated in 10% neutral buffered 
formalin (prepared by 1:25 dilution of 37% formaldehyde solution in PBS). 
Antigen retrieval was performed with citrate buffer (pH 6.0) or with Tris-EDTA 
buffer (pH 9.0). Slides were blocked with 10% BSA + 0.05% Tween 20 and the 
antibodies listed in Supplementary Table 11 were diluted in 2% BSA in 0.05% PBST 
and used in a multiplexed manner using the OPAL kit (Akoya Biosciences), each 
one overnight at 4 °C. We used the following staining sequences: CK → S100A4 
→ PDPN → DAPI (for 4T1); S100A4 → CK → PDPN → DAPI (for E0771 and 
for human); S100A4 → CD45 →DAPI; or CD3 →DAPI. Whole-tumor sections 
from the human TNBC cohort were stained by either of the following sequences: 
set 1: α-SMA → S100A4 → NT5E → HLA → PDPN; set 2: α-SMA → CK → 
PDPN →DAPI; or set 3: S100A4 → NT5E →HLA →CK → DAPI. Each antibody 
was validated and optimized separately and then MxIF was optimized. Slides of 
mouse and whole human tumor sections were imaged with a DMi8 Leica confocal 
laser-scanning microscope, using HC PL APO ×20/0.75; ×40/1.3 oil-immersion; or 
×60/1.4 oil-immersion objectives and HyD SP GaAsP detectors. TMA slides were 
imaged with an Eclipse TI-E Nikon inverted microscope, using a CFI Super Plan 
Fluor ×20/0.45 and DAPI/FITC/Cy3 and Cy5 cubes. Images were acquired with 
a cooled electron-multiplying charge-coupled device camera (IXON ULTRA 888; 
Andor).

Image analysis. Quantification of TMA staining was performed using the Fiji 
image processing platform49. ROIs were manually depicted to include all intact 
tissue areas and exclude regions of adipose tissue (due to nonspecific staining). 
H&Es from the TNBC TMA were used to assist in training and optimizing this 
step. Following background subtraction using a rolling ball with a radius of 200 
pixels, the CK, S100A4 and PDPN channels were thresholded using Otsu method. 
The threshold of CD3 (stained and analyzed separately) was set to 2,500–65,535. 
All pixels above the threshold were counted as 1, and their sum was divided by 
the ROI (Fig. 7a). Channel/ROI scores of all replicate cores from the same patient 
(typically three) were averaged and the average score was used for statistical 
analysis. Ratios between different stains were calculated for each core and averaged 
for each patient. In the TNBC cohort, two patients were excluded from the analysis 
due to S100A4/PDPN values 3 × s.d. above average. Four patients were excluded 
from CD3 analysis due to unusually high background staining that could not 
be interpreted. All other scores collected were included in the analyses. In the 
METABRIC cohort, five patients were excluded from the analysis due to S100A4/
PDPN values 3 × s.d. above average.

Regional analysis of cancer-adjacent and dense-stromal regions was performed 
as follows: we applied a threshold to the CK channel using Moments method and 
expanded the CK+ regions using the ‘Dilate’ function six times. A mask generated 
from this image was used to define ‘cancer-adjacent’ regions, and the inverse mask 
was used to define ‘dense-stromal’ regions. Ratios between different stains were 
calculated for each region as described above. In the METABRIC cohort, owing to 
the small size of tumor cores, regional analysis was performed only on samples in 
which 0.05 < cancer-adjacent/total ROI < 0.95 (n = 219 patients).

Analysis of overlap between CAF markers in human breast tumors was 
performed on MxIF staining of whole-tissue FFPE sections from the TNBC cohort. 
Briefly, the sections were scanned by confocal microscopy as described above. In 
cases of staining with more than four fluorophores, we performed linear spectral 

unmixing. The images from each channel were then z-stacked (‘Average’) and a 
threshold was applied using Moments method to generate masks. The number of 
overlapping pixels between channels was quantified using the ‘AND’ function in 
the image calculator and divided by the total number of pixels of the originating 
channels.

Analysis of the overlap between CAF markers in murine tumors was  
performed on MxIF staining of whole-tissue FFPE sections. Masks for each 
channel were generated using Moments method. For 4T1 tumors, as CK is  
located only in the cytoplasm, whereas in the mouse S100A4 is observed,  
in some cases, also in the nucleus, we removed the nuclear region from each 
channel before analysis. Briefly, we applied ‘Fill holes’ and ‘Watershed’ on  
the DAPI mask, removed particles smaller than 8 μm2 and created a mask from 
resulting particles. The ‘Subtract’ command was used to remove the nuclear region 
from each channel. The number of overlapping pixels between channels was 
quantified using the ‘AND’ function and divided by the total number of pixels of 
the originating channels.

Object-based analysis was performed on MxIF staining (three sets as described 
in the previous section) of whole-tissue FFPE sections from the TNBC cohort 
using QuPath50 (v.0.2.0-m8). First, cells were segmented (‘cell detection’) based 
on nuclear staining (DAPI). Next, we trained the ‘Random Trees’ classifier to 
categorize cells as ‘pCAF’, ‘sCAF’ or ‘cancer cells’ (or to ignore) based on all 
channels in 6–7 representative images (with α-SMA, MHC and NT5E channels 
turned off, for blindness purposes). The classifier was applied on all images from 
the same set (for each set we trained a different classifier) and for each marker, 
the mean marker intensity per cell per image was calculated by the software. Cells 
with mean intensities greater than the 0.75 quantile (in each image) were defined 
as expressing a specific marker. After averaging for each patient the conditional 
probability of being positive for a marker (based on multiple images), given the 
cells for each cell and each marker, a test for the effect of cell and marker on that 
probability was conducted using ANOVA with Tukey correction for multiple 
comparisons. The analysis was performed separately for each of the three sets, 
similar trends were obtained across sets and the results of set 1 (in which all subset 
markers are present) are presented in Fig. 6.

Statistics and reproducibility. Clinical characteristics were compared by means 
of the Pearson chi-squared test for categorical variables and a Student’s t-test 
for age (continuous variable). Recurrence-free and overall survival rates were 
obtained based on Kaplan–Meier estimates and a log-rank test was performed  
to study the difference of recurrence-free/overall survival rates. Density estimate 
of the divided values was obtained using integrated vase box plots and means  
of the two genetic groups were compared using a Student’s t-test. For visualization 
purposes, values above two box plot whiskers were omitted from the plot,  
but were included in the statistical analysis (seven values from Extended Data  
Fig. 7e and six values from Extended Data Fig. 8c). Relative risk estimates and 
95% confidence intervals were calculated utilizing Cox proportional hazard 
regression model for recurrence-free survival data, univariate analysis to study 
the effects of the variables on recurrence-free survival and multivariate analysis, 
considering first order interaction. Dividing continuous variables: to visualize  
the results of the Cox proportional hazard regression model, S100A4/PDPN  
and PDPN/Total ROI were divided into high and low groups by their median  
(in the TNBC cohort) or by a value of 1 (in the METABRIC cohort). No  
statistical method was used to predetermine sample size. The investigators  
were blinded to clinical characteristics and outcome data upon image 
acquisition and image analysis. All experiments were reproducible. Preliminary 
immunohistochemistry and MxIF staining experiments were performed on 
n = 3–5 samples and then all slides of the same cohort were stained and imaged 
together unless otherwise indicated.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Single-cell and bulk RNA-seq data that support the findings of this study have been 
deposited in the Gene Expression Omnibus under accession code GSE149636. 
All other data supporting the findings of this study are available from the 
corresponding author on reasonable request.

Code availability
FACS analysis was performed using FACS Diva v.8, FlowJo 10.1 and Kaluza 2.1 
software. Image analysis was conducted using Fiji ImageJ 1.52g and QuPath 
program (v.0.2.0-m8). Read mapping of single-cell RNA-seq data was performed 
using HISAT v.0.1.6, followed by analysis with the custom-made MetaCell package 
in R (Methods). Gene-set enrichment analysis was conducted using Metascape 
software. Statistical analysis utilized R program (v.3.6.0; R Foundation for Statistical 
Computing). Packages used for analysis and visualization: tidyr v.1.0.0, reshape2 
v.1.4.3, survival v.3.1-8, survminer v.0.4.6, ggplot2 v.3.2.1, ggthemes v.4.2.0, 
cowplot v.1.0.0 and corrplot v.0.84. Pareto data analysis was performed in Wolfram 
Mathematica 11.3.0, with custom-made Mathematica scripts. GO analysis was 
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conducted with the Mathematica package MathIOmica. Scripts and auxiliary data 
needed to reconstruct analysis files from count matrices to full figures are available 
in a git repository (https://github.com/AlonLabWIS).
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | A single cell map of breast cancer stroma. a, Sorting strategy: All live single cells (PI negative cells after debris and doublet 
exclusion) staining negative for Ter119 (Red blood cells); CD45 (immune); and EpCAM (epithelial) were collected and single cell sorted. PDPN was used 
for index sorting of pCAFs. Data are combined from 8 independent experiments, with a total n = 15 mice. FACS plots from a representative 4 W tumor 
are shown. b-c, Quality control metrics of single cells analyzed in this study. b, Total unique molecular identifier (UMI) per cell. Cells are grouped by 
batch (plate) and color-coded by biological replicate (mouse). The time point for each batch is indicated. Cells with less than 1,000 UMI were discarded 
from the analysis. c, Fraction of analyzed cells/batch after filtering. Batches are grouped and color-coded as described in b. d, Single cell RNA-seq data 
from n = 8987 QC positive cells staining negative for Ter119, CD45 and EpCAM was analyzed and clustered using the MetaCell algorithm, resulting in a 
two-dimensional projection of cells from 15 mice. 88 meta-cells were associated with 4 broad clusters, annotated and marked by color code. e, Expression 
of the hallmark genes for the 4 clusters presented in d on top of the two-dimensional projection of breast cancer stroma. Colors indicate log transformed 
UMI counts normalized to total counts per cell. f, Volcano plot displaying differentially expressed genes between Pdpn+ fibroblasts and S100a4+ fibroblasts 
(see also supplementary table 4). Marker genes for NMF, pCAF, and sCAF are highlighted. A total of n = 8033 cells was analyzed using FDR adjusted 
two-sided chi square test. g, Fraction of cells originated from each mouse and subset, from all cells originated in their time point. Bar values represent 
the mean fraction values. Time points and subclasses are annotated and colored as in Fig. 1d. h, Squared Pearson correlation matrix for n = 1045 genes 
between bulk and single-cell RNA-sequencing results for NMF, pCAF, and sCAF.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Pdpn+ fibroblasts undergo dynamic changes in gene expression and subset composition during tumor progression. a, Cell-surface 
PDPN protein expression levels obtained from the sorting data were used to quantify the percent of PDPN+ and PDPN− cells in the CD45−EpCAM− stroma 
in the different time points. Data are combined from 7 independent experiments; n = 3 mice per group. Error bars represent 95% CI of the mean. P-value 
of the two-way ANOVA interaction between fibroblast subtype and time point is presented. b, Pseudo-time of expression for individual metacells (color 
coded by functional subclasses as in Fig. 2) included in the slingshot analysis. A total of n = 3465 cells was analyzed. Box plots display median bar, first–
third quartile box and 5th–95th percentile whiskers. c, Distribution of cells across time points (color coded) within metacells included in the slingshot 
analysis. Metacell numbers and order are consistent across all figure panels and match the order in Fig. 2. d, Expression of hallmark NMF and pCAF genes 
(additional to those presented in Fig. 2e) across metacells (average UMI/cell), ordered by pseudo-time.
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Extended Data Fig. 3 | pCAFs and NMFs form a curve in gene-expression space, whereas a tetrahedron describes sCAF gene expression. a, PCA 
analysis of NMF, and pCAF and sCAF from 2W and 4W, color coded according to the subclasses defined in Fig. 1c. n = 3703 cells. b-c, PCA analyses for 
NMF and pCAF (b) and for sCAF (c) color coded as in a. n = 3703 cells. d, Data projected on the four faces of the tetrahedron. e, Explained variance as 
a function of the number of PCs (real data) vs. shuffled. Note that the total variance explained by the first 3 PCs, about 5%, is typical of single-cell gene 
expression data22. f, Variance of vertex positions as a function of the number of vertices considered, using PCHA with k=3-7 vertices. g, Variation of vertex 
position (bootstrapping) for the real data (ellipses color-coded as in Fig. 3) vs shuffled data (grey ellipses). h, Histogram depicting the average variation of 
vertex positions calculated for the real data (green) vs multiple runs of shuffled data (grey). i, Histogram depicting the ratio between the volumes of the 
convex hull of the data and the minimal enclosing tetrahedron (t-ratio). The t-ratio of the real data (green) is compared to t-ratios of shuffled data (1000 
shuffles; grey).
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | PDPN and S100A4 proteins mark distinct types of cells in 4T1 mouse tumors, the majority of which are CK-negative. a, b, 
Representative images of normal mammary fat pads (NMF; a) and lung metastases (Mets; b) (see Fig. 4a) stained with antibodies against the indicated 
proteins. n = 3 mice per time point; Scale bar = 50μm, inset scale bar = 17μm. c, Quantification of the average overlap between CK, PDPN, and S100A4 
staining in NMFs, primary tumors (2W and 4W) and Mets. Points represent the number of overlapping pixels between two channels, divided by the total 
number of pixels of the originating channels, in n = 3 biological replicates (each dot is an average of 9 images per mouse). Mean ± SEM, p-values were 
calculated by two-way ANOVA followed by Tukey’s multiple comparisons test.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | PDPN and S100A4 proteins mark distinct types of cells in E0771 mouse tumors, the majority of which are CK-negative. a, b, 
E0771 cancer cells were injected into the mammary fad pad of C57BL/6 mice. 4W post injection the tumors were excised and fixed. Formalin fixed paraffin 
embedded (FFPE) tissue sections were immunostained with antibodies against the indicated proteins (n = 4 mice in two independent experiments). 
Representative images from 2 different mice are shown in (a) and (b). Scale bar = 50 μm, inset scale bar = 17μm. c, Quantification of the average overlap 
between CK, PDPN, and S100A4 staining in E0771 tumors. n = 4 mice in two independent experiments, 3-7 images per mouse. Mean ±SD, P-values were 
calculated by two-way ANOVA correcting for multiple comparisons and were not found to be significant (p > 0.05), no multiple comparison test was 
performed. d, FACS analysis of Ly6C and α-SMA expression in CD45−mCherry−PDPN+ cells freshly harvested from 4W E0771 tumors and immediately 
fixed. The results from n = 3 biological replicates are quantified and analyzed utilizing one-way ANOVA followed by Tukey’s multiple comparisons test, 
Mean ±SEM.
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Extended Data Fig. 6 | Subsets of human sCAFs express MHC class II and NT5E, whereas a subset of pCAFs expresses α-SMA. a, b, The overlap 
between S100A4, CK, MHC-II and NT5E stains (a; n = 12 patients, average scores of 3 images per patient) and between PDPN, CK, and α-SMA stains 
(b; n = 14 patients, average scores of 2-4 images per patient) in TNBC patients. Median is presented with 1st and 3rd quartiles, with untrimmed violin plot 
overlay. P-values were calculated by two-way ANOVA followed by Tuckey’s multiple comparisons test. c, Representative images of MxIF staining of serial 
sections from the same patients presented in Fig. 6a with antibodies against the indicated proteins. Scale bar = 500 μm.; inset scale bar = 90 μm.
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Extended Data Fig. 7 | pCAFs tend to localize to cancer-adjacent regions more often than sCAFs in human breast cancer patients. a, Heat map showing 
Pearson’s correlation coefficients of the staining scores for different cell type markers (n = 70 patients). b, c, The association with overall survival of PDPN 
(b) or S100A4/PDPN (c) scored and classified as in Fig. 7b was assessed by KM analysis (n = 70 patients, P-values were calculated using log-rank test, 
two-sided). d, Illustration of the regional analysis workflow. e, The ratio of cancer-adjacent/dense stroma PDPN and S100A4 staining was determined 
for each core in the TNBC TMA (See also Fig. 7d). n = 70, median is presented with 1st and 3rd quartiles with trimmed violin plot overlay, P-value was 
calculated using two-sided Wilcoxon matched pairs signed-rank test. f, g, Cancer-adjacent regions and regions of dense stroma were determined for 
each core in the METABRIC TMA based on CK staining (see Methods section), PDPN and S100A4 staining in each region was scored (f) and the ratio of 
cancer-adjacent/dense stroma PDPN and S100A4 staining was determined (g). n = 219, median is presented with 1st and 3rd quartiles with trimmed violin 
plot overlay, P-value was calculated using two-sided Wilcoxon matched pairs signed rank test.
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Extended Data Fig. 8 | BRCA status is not significantly correlated with recurrence free survival in a cohort of TNBC patients. a, CD3 and DAPI staining 
was performed on n = 68 patients from the TNBC cohort. Representative staining in a BRCA mutated (mut) patient and a BRCA WT patient is shown. b, 
Representative H&E stains of a BRCA mutated (mut) patient and a BRCA WT patient are shown (n = 25 BRCA WT; n = 20 BRCA mut; Serial sections of the 
same cores used in Fig. 8a are shown in a and b). Scale bar = 500μm; inset scale bar = 80μm. c, Box plot depicting CD3 staining scores (see Methods 
section) in patients with known BRCA status from our TNBC cohort (n = 23 BRCA WT; n = 20 BRCA mut) as well as the total TNBC cohort (All, n = 68). 
Median is presented with 1st and 3rd quartiles with trimmed violin plot overlay. P-value was calculated using a two-sided Student’s t-test. d, TNBC patients 
were stratified by BRCA mutational status and the association with recurrence free survival was assessed by KM analysis. n = 45, P-value was calculated 
using two-sided log rank test.
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